Backend Skills
后端服务、API、数据库
Found 24 skills
Cloud laboratory platform for automated protein testing and validation. Use when designing proteins and needing experimental validation including binding assays, expression testing, thermostability measurements, enzyme activity assays, or protein sequence optimization. Also use for submitting experiments via API, tracking experiment status, downloading results, optimizing protein sequences for better expression using computational tools (NetSolP, SoluProt, SolubleMPNN, ESM), or managing protein design workflows with wet-lab validation.
Cloud laboratory platform for automated protein testing and validation. Use when designing proteins and needing experimental validation including binding assays, expression testing, thermostability measurements, enzyme activity assays, or protein sequence optimization. Also use for submitting experiments via API, tracking experiment status, downloading results, optimizing protein sequences for better expression using computational tools (NetSolP, SoluProt, SolubleMPNN, ESM), or managing protein design workflows with wet-lab validation.
Cloud laboratory platform for automated protein testing and validation. Use when designing proteins and needing experimental validation including binding assays, expression testing, thermostability measurements, enzyme activity assays, or protein sequence optimization. Also use for submitting experiments via API, tracking experiment status, downloading results, optimizing protein sequences for better expression using computational tools (NetSolP, SoluProt, SolubleMPNN, ESM), or managing protein design workflows with wet-lab validation.
Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
Access NCBI GEO for gene expression/genomics data. Search/download microarray and RNA-seq datasets (GSE, GSM, GPL), retrieve SOFT/Matrix files, for transcriptomics and expression analysis.
Access NCBI GEO for gene expression/genomics data. Search/download microarray and RNA-seq datasets (GSE, GSM, GPL), retrieve SOFT/Matrix files, for transcriptomics and expression analysis.
Access NCBI GEO for gene expression/genomics data. Search/download microarray and RNA-seq datasets (GSE, GSM, GPL), retrieve SOFT/Matrix files, for transcriptomics and expression analysis.
Fast DataFrame library (Apache Arrow). Select, filter, group_by, joins, lazy evaluation, CSV/Parquet I/O, expression API, for high-performance data analysis workflows.
Fast DataFrame library (Apache Arrow). Select, filter, group_by, joins, lazy evaluation, CSV/Parquet I/O, expression API, for high-performance data analysis workflows.
Fast DataFrame library (Apache Arrow). Select, filter, group_by, joins, lazy evaluation, CSV/Parquet I/O, expression API, for high-performance data analysis workflows.
Differential gene expression analysis (Python DESeq2). Identify DE genes from bulk RNA-seq counts, Wald tests, FDR correction, volcano/MA plots, for RNA-seq analysis.
Differential gene expression analysis (Python DESeq2). Identify DE genes from bulk RNA-seq counts, Wald tests, FDR correction, volcano/MA plots, for RNA-seq analysis.
Differential gene expression analysis (Python DESeq2). Identify DE genes from bulk RNA-seq counts, Wald tests, FDR correction, volcano/MA plots, for RNA-seq analysis.
Query Reactome REST API for pathway analysis, enrichment, gene-pathway mapping, disease pathways, molecular interactions, expression analysis, for systems biology studies.
Query Reactome REST API for pathway analysis, enrichment, gene-pathway mapping, disease pathways, molecular interactions, expression analysis, for systems biology studies.
Query Reactome REST API for pathway analysis, enrichment, gene-pathway mapping, disease pathways, molecular interactions, expression analysis, for systems biology studies.
Comprehensive backend development skill for building scalable backend systems using NodeJS, Express, Go, Python, Postgres, GraphQL, REST APIs. Includes API scaffolding, database optimization, security implementation, and performance tuning. Use when designing APIs, optimizing database queries, implementing business logic, handling authentication/authorization, or reviewing backend code.
Comprehensive backend development skill for building scalable backend systems using NodeJS, Express, Go, Python, Postgres, GraphQL, REST APIs. Includes API scaffolding, database optimization, security implementation, and performance tuning. Use when designing APIs, optimizing database queries, implementing business logic, handling authentication/authorization, or reviewing backend code.
Comprehensive backend development skill for building scalable backend systems using NodeJS, Express, Go, Python, Postgres, GraphQL, REST APIs. Includes API scaffolding, database optimization, security implementation, and performance tuning. Use when designing APIs, optimizing database queries, implementing business logic, handling authentication/authorization, or reviewing backend code.
Use this skill when working with symbolic mathematics in Python. This skill should be used for symbolic computation tasks including solving equations algebraically, performing calculus operations (derivatives, integrals, limits), manipulating algebraic expressions, working with matrices symbolically, physics calculations, number theory problems, geometry computations, and generating executable code from mathematical expressions. Apply this skill when the user needs exact symbolic results rather than numerical approximations, or when working with mathematical formulas that contain variables and parameters.
Use this skill when working with symbolic mathematics in Python. This skill should be used for symbolic computation tasks including solving equations algebraically, performing calculus operations (derivatives, integrals, limits), manipulating algebraic expressions, working with matrices symbolically, physics calculations, number theory problems, geometry computations, and generating executable code from mathematical expressions. Apply this skill when the user needs exact symbolic results rather than numerical approximations, or when working with mathematical formulas that contain variables and parameters.
Use this skill when working with symbolic mathematics in Python. This skill should be used for symbolic computation tasks including solving equations algebraically, performing calculus operations (derivatives, integrals, limits), manipulating algebraic expressions, working with matrices symbolically, physics calculations, number theory problems, geometry computations, and generating executable code from mathematical expressions. Apply this skill when the user needs exact symbolic results rather than numerical approximations, or when working with mathematical formulas that contain variables and parameters.